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synopsis 
A computerized method has been developed for the analysis of the behavior of a sealed 

joint. The method is based upon the use of fundamental timedependent mechanical 
properties of a polymeric sealant, which can be easily determined in the laboratory, to 
feed a digital computer program that performs internal force balances within a given 
joint seal configuration by dividing the joint seal into a large number of “finite elements” 
in which the sealant properties are invariant. The computational method is an out- 
growth of stress analysis programs that have been developed for use in the study of stress 
distributions within solid rocket propellant “grains.” Output from the computer pro- 
gram consists of a prediction of the overall geometric deformation of the sealant and the 
distribution of stresses and strains within the joint seal. Essential to the ideologic 
development of this method is the “separability” of timedependent and strain-dependent 
aspects of the behavior of the material properties. However, the method should be 
operable even when this “separability” is only approximately maintained, as in many 
real materials. Fundamental properties have been determined on several typical 
sealant materials. A description is given of the mode of operation of the computational 
method, but detailed results are given in a companion article. 

INTRODUCTION 
The sealing of joints between essentially rigid components of various 

structures is a vital (to the structure) yet not well known application of 
many types of polymeric or quasipolymeric materials. For example, the 
expansion joints of a concrete roadway, the gap between glass window and 
wooden or aluminum window frame, and the seams of a flush-jointed boat 
all require a sealant t,o curb the passage of air, water, heat, etc. Tradi- 
tional inexpensive sealant materials (putty, tar, and the like) are widely 
used, but in joints where the rigid members undergo significant movement 
relative to each other (so-called “dynamic” joints), a considerable degree of 
elastomer-like material behavior is needed. The variety of types of joint 
configurations that need to be sealed is limited only by the imagination of 
the designers and devisers of the structures; the movements that may occur 
during and after construction are even more varied. Most structures are 
exposed to a fairly broad range of temperatures, and it is notorious that 
elastomeric materials undergo marked changes in behavioral properties 
precisely in the temperature ranges that are of concern to structural 
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planners. A typical situation is the widening of a gap between sections of a 
building wall because of thermal contraction in cold weather, combined 
with an increase in stiffness and brittleness of the gap-sealant material at 
these same temperatures. In consequence of this multiplicity of end-use 
requirements, it is essentially impossible to develop a universal set of sealant 
specifications. Instead, it has usually been necessary to develop specifica- 
tions for each individual use and to modify the specifications empirically 
when shortcomings appear. 

Since a joint sealant must perform a mechanical function, specification of 
its mechanical behavior is logical. (Other considerations often may limit 
the possible choice of materials; e.g., the sealant material must not ad- 
versely affect the substrate to which it is applied, nor may the substrate or 
the environment adversely affect the sealant’s properties.) Several 
general-purpose mechanical tests are widely used as specifications : tensile 
breaking stress and strain, “rubber modulus” at various elongations, com- 
pression set or stress relaxation, and fatigue life in the Bostik Mastic 
Tester, have all been relied on. Relevance of the measurements obtained 
to actual use is likely to require an almost intuitive appreciation of past ex- 
perience. Special-purpose tests may be devised, but the multiplicity of 
end-use requirements can be expected to yield an equal multiplicity of such 
tests. In any case, correlation of field failures or successes with numerous 
laboratory tests and controlled field tests is bound to be a tedious and time- 
consuming operation. 

The ability to predict the performanFe of a given sealant material iIi a 
proposed application would be an invaluable tool in the specification of 
sealants and in the design of joint configurations to make optimum use of 
sealants. Because of the complexity of joint configurations and move- 
ments and the limitations of the simple analytical tools available, relatively 
few attempts have been made to predict sealant behavior in a sealed joint 
by theoretical means. One such attempt,2 which concentrated on the effect 
of joint thickness (probably the most important single geometric factor in a 
butt joint), required that the shape of the deformed sealant surface be 
arbitrarily assumed (it was taken to be parabolic) and was limited to simple 
rectangular butt joints. The distribution of stress and strain was also 
arbitrarily assumed to follow a certain simple pattern. Subsequent work3 
has also been based on this particular group of assumptions. On the other 
hand, true fundamental analysis requires not only that the geometric com- 
plexity of the real joint should be allowed, but that the nonlinearly visco- 
elastic properties of the sealant material should be considered as well. 

We have approached this problem from the standpoint of applying a con- 
tinuum mechanical model which exhibits the fundamental viscoelastic 
material properties of a given sealant substance. The determination of the 
fundamental properties may be done in a geometrically simple situation. 
These properties may then be applied to the continuum model by a com- 
puter program which permits the needed geometric and viscoelastic com- 
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plexity. Not only overall material deformation but also stress and strain 
distributions may be predicted under various loading conditions. Valida- 
tion of the method may be sought by comparison with easily measured cases 
(which are yet too complex for simple analysis). 

If this approach proves successful, a considerable reduction may be pos- 
sible in the amount of testing prior to sealant specification. Material 
parameters may be determined under controlled laboratory conditions, 
with a variety of geometric cases being accounted for after determining one 
set of parameters. Joint configuration and loading can be varied in the 
computer program to predict field performance. The influence of temper- 
ature changes, aging, and composition changes may be determined in the 
laboratory and used to predict field performance of the changed sealant 
material. If the fundamental parameters show smooth trends with these 
changes, interpolation and extrapolation to other cases will be greatly 
facilitated. 

The work reported in this and the following article4 is intended primarily 
to show the feasibility of the technique. Already existing computer pro- 
grams were applied without essential modification; the materials testing 
was restricted to room temperature and only unaged materials were used. 
Simple extension and compression butt joints were used, with one excursion 
into a cycled joint. 

Obviously a more sophisticated model (and considerable experimental 
comparisons) would be needed to consider all possible variations in joint 
movement, temperature cycling, joint design, and aging. Work is con- 
tinuing on further applications of the model to more complex movements, 
cycling, and so on. 

MECHANICAL PROPERTIES OF JOINT SEALANT MATERIAL 

The complexity of rational analysis of joint seal behavior stems from 
several sources. Those which are purely geometric (i.e., the different 
stresses and deformations which exist simultaneously in different parts of 
the joint seal) will be considered in a later section. The fundamental vis- 
coelastic properties of the sealant material also contribute complexity, 
since these properties are dependent on both time (after application of 
stress or deformation) and deformation. In the general case, both effects 
may interact so that the stress-strain-time description of even a simple 
deformation becomes exceedingly complex. Rational analysis of such 
materials is beyond the scope of this work. 

It was pointed out by Smith,5 citing many predecessors, that for many iso- 
tropic elastomers, the stress, both in stress relaxation at constant strain 
and in constant strain rate testing, could be expressed as a function of 
strain multiplied by a function of time, viz., 
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The appropriate function of time would be the tensile stress-relaxation 
modulus, E(t), or the constant strain rate tensile modulus, F( t ) ,  which 
Smith showed to be related to one another by 

(2) 

an equation derived from linear viscoelasticity theory. The function @(e) 

may be regarded as an empirical strain measure. At small strain, it must 
approach E = X -- 1, so that linear viscoelasticity theory will hold. The 
appropriate form for g(e) = @ ( e ) / ~  was found to be 1/(1 + e) for both SBR 
gum vulcanizate and NBS isobutylene, the latter being analyzed both by 
stress relaxation data and by constant strain rate data. In general, g(e) 
must be regarded as an empirical function to be determined for each mate- 
rial. Likewise, E(t)  or F(t )  is an empirical function of time which must be 
found for each material. For a few nonrelaxing materials, E(t) is essen- 
tially constant, but for most elastomeric and quasi-elastomeric materials, 
E(t)  relaxes more or less rapidly, either to zero or to a long-time constant 
value. The form of E(t) is usually temperature dependent; there is a well- 
known principle of time-temperature eq~ivalence~*~ which applies to many 
substances. This equivalence, once established, can also facilitate rational 
analysis. However, the work reported now was all performed at room 
temperature. 

From this background, certain limitations appear to be inherent in the 
present approach. Separability or approximate separability of time and 
strain effects must be demonstrable. The applicability of equations like 
eq. (2), derived from the theory of linear viscoelasticity, cannot be assumed 
without test. Alternatively, it may be shown that the time-strain history 
of a particular geometric case is essentially the same as the history of the 
simplified test samples. 

E(t)  = F(t) [ l  + d log F( t ) /d  log t ] ,  

MEASUREMENT 

To obtain meaningful elementary material properties, geometric simplic- 
ity is essential. Simple uniaxial elongation was selected. To avoid stress 
concentrations at grips, ring samples were mounted over pins; this also 
had the advantage that crosshead motion (of the Instron tester) was di- 
rectly equal to sample extension. The rings were cut from thin cast sheets 
(typically 0.075 in. thick) of the various elastomers tested. The rings were 
cut so as to have a uniform rectangular cross section, with the annular 
thickness about 0.04 in., i.e., less than the sheet thickness; this eliminated 
twisting of the rings when they were extended, a serious shortcoming with 
flat-ring samples.8 (The actual thickness and width of each ring were 
measured prior to testing.) To cut such rings, a special cutter was used.* 
The initial separation of the Instron grips was 1.00 in. while the ring di- 
ameters were 0.64 in. and 0.72 in. Experimentally it was found that these 

* We are deeply indebted to P. E. &leks and W. E. Seas both for the ring-cutting 
device and for determining the stress-strain curv7res of the ring and model-joint test 
samples. 
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dimensions caused negligible initial stress to be registered by the Instron 
gauge, yet gave force-extension curves that rose fairly sharply from the 
origin. Strain was calculated on a 1.00-in. gauge length, which was 
within 7% of the strain calculation used by Smith6; his expression for gauge 
length would give 

Lo = (7r/4)(0, + Do) = 1.07 in. (3) 

The crosshead speeds used and corresponding extension rates are given 
When available, ten ring samples were stretched to break at 

(The 50 ipm speed was not always used.) 
in Table I. 
each of seven crosshead speeds. 

TABLE I 
Testing Speeds for Ring Samples 

Crosshead speed, ipm Elongation rate, %/min 

0.2  
0 .5  
1.0 
2.0 
5 . 0  

10.0 
20.0 
50.0 

20 
50 

100 
200 
500 

1000 
2000 
5000 

TABLE I1 
Materials Tested 

sys- 
tem Polymer type 

A 

B 

C 

D 

E 

F 

Polysuliide 
(4000 MW, 
low degree of 
crosslinking) 

Silicone 

Silicone 

Polysulfide 

Polyurethane 

Poly sulfide 
(same as A) 

Composition Source Remarks 

30 phr MT carbon black Thiokol Not a 
15 phr curing paste Chemical commercial 
(50% PbOz, Corp. system; 
45% dibutyl oversimplified 
phthalate, 5% 
stearic acid) 

One-part, containing General Commercial 
a black filler Electric sealant 

One-part, containing Dow Commercial 
a black filler Corning Co. sealant 

Two-part, containing Thiokol Representative 
MT carbon black as Chemical of recommended 
a filler, cure Corp. commercial 
system based on PbOz practice, 

Two-part, asphalb Products Commercial 
modified Research highway 

co. 

highway sealant 

Corp. sealant 

(same as A) Chemical system 
15 phr curing paste, Thiokol Unfilled 

cow. 
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Certain materials proved exceedingly difficult to prepare rings from, either 
because they were too fast-curing to level properly in the polished molds 
(silicone) or too soft when “cured” (commercial polyurethane-asphalt 
sealant and commercial polysulfide sealant). In  such cases, fewer replica- 
tions were, perforce, possible. 

The materials tested were selected to run a gamut of sealant varieties. 
They included a greatly simplified polysulfide sealant containing only MT 
black and a PbOz-based curing paste, two commercial silicone sealants, a 
commercial-type two-part polysulfide sealant, and a commercial polyure- 
thane-asphalt two-part sealant. Table I1 gives a description of these 
materials. 

Averaged stress-strain curves were obtained for all systems. It was 
noted that one of the silicone sealants (system C) had relatively little de- 
pendence of the stress-strain curve on the strain rate, while the other (sys- 
tem B) had essentially no rate dependence. 

These data were intended for evaluation of the strain- and time-depen- 
dence of the shear modulus of the materials. For three-dimensional stress 
analysis, a second material parameter is needed to describe the behavior of 
isotropic materials. This, a measure of volume change or bulk modulus, is 
readily expressed as Poisson’s ratio. For small uniaxial tensile strain, 
Poisson’s ratio is defined as 

Y o  = elat/€, (4) 

and an infinitesimal constant-volume extension is expressed by vo = 0.5. 
For finite extension, however, the relationship between volume change and 
yo becomes more complex, and a more general definition of Poisson’s ratio’? 
becomes preferable, viz., 

(5 )  

The Y value reduces to uo as X - 1, of course, but remains constant at 0.5 
for any isovolumetric extension. 

Tensile strips with circles drawn on them as benchmarks were chosen to 
determine Poisson’s ratio. Under loading, these strips deform in uniaxial 
strain. Measurements were made of the major and minor axes of the de- 
formed circles. The tensile strips (4 in. X l/z in.) were cut from cast 
sheets, of systems A, D, and E. Strips were also prepared from unfilled 
cast sheets of the polysulfide and curing paste of system A (system F). 
The strips were elongated and the deformations of the circles were photo- 
graphed with a Polaroid 100 camera equipped with a close-up lens using 
3000 film; gauge distance was 9.75 in. between lens and subject. A scale 
was placed alongside the strip to provide a reference for absolute measure- 
ments; at times, resolution was possible to *0.02 in. The strips were ex- 
tended to various elongations, up to 300’% in some cases. No attempt was 
made to determine if the volume changes showed any time dependence. 

Figure 1 presents the data correlated in the operational parameters of 
axial elongation and lateral contraction. The solid curve is a smoothed 

u = 0.5(1 - In Ja/ln A). 
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fit through the averages for the combined data. As would be expected, 
the data spread is much larger at low elongation where measurements of 
deformations are affected by the resolution uncertainty of k0.02 in,; at 
higher elongations, the resolution error contributions are substantially less. 
Overall, the curve fit is very good for the combined data, indicating that 
both the filled and unfilled systems behave the same way under simple ten- 
sion, i.e., the introduction of filler does not disturb the Poisson ratio of the 
basic polysulfide system. Curves were calculated for various constant 
values of v and also appear in Figure 1 as broken lines. These tend to con- 
verge at high elongations, so that the resolution error contributions to vo 
result in a relatively larger error in v. 

From Figure 1 it was concluded that these materials all deformed at 
nearly constant volume. (The apparent crossover of the smoothed curve is 
unlikely, however.) This is essentially the behavior expected of a liquid- 
like continuum rubber. The resolution uncertainty (of k0.02 in.) trans- 
lates into anuncertainty of k0.02 in v. 

Reduction of Data to Determine Material Property Parameters 
Following Smith,5 the constant strain rate data were replotted to facili- 

tate determination of F( t )  if, indeed, it was separable from @(t) in eq. (1). 
The system A data are shown in Figure 2, plotted as log a versus log t. 
Each strain rate contributed the data points shown as a curve rising toward 
the right. The set of parallel lines shown with negative slope represents 
the a-t relationship a t  each constant elongation. Each of these may be 
regarded as a plot of F( t )  for its given e. The Separability Eq. (1) does not 
require that these lines be straight, but merely that the vertical shifts be 
constant between them. The constant slope [d log F ( t ) / d  log t ]  is of great 
convenience in data manipulation, of course. 

Since plots like Figure 2 showed that time-strain separability exists for 
all the systems described in Table 11, isochronal stress-strain cuwes could 
be constructed by plotting u versus e values selected from Figure 2 at var- 
ious constant times. Figure 3 shows selected isochrones for system A. 
Time effects have now been removed from the curves, so they may be re- 
garded as plots of @(€) versus e, and clearly display the nonlinearity of the 
stress-strain relationship. 

This nonlinearity is the basis for many different approaches to finite 
elasticity theory. We have chosen to use the general approach of Herr- 
mann et al.,g-12 which is based on the use of the large strain tensor, E f j ,  as 
defined by Green and Zerna.13 At its present state of development, this 
approach sets up four strain-dependent material parameters, designated 
as K1 to Kq. The first parameter was chosen so as to reduce to the shear 
modulus at infinitesimal strain while KZ is related to Poisson’s ratio; it is 
0.5 at all deformations for a constant-volume strain. K3 and Kq (which 
are related to the strain-induced anisotropy of the material) become zero 
at zero strain. Proper evaluation of these latter two consequently re- 
quires an extremely elaborate and sophisticated experimental program, 
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such as that undertaken by Rivlin et al.,14*16 Treloar,l6 and Blatz and KO.’’ 
Since this was beyond the scope of the present feasibility demonstration, 
it was assumed that K3 and K ,  retained zero values up to moderate strains. 
Failure of this assumption would be expected to result in failure of K1 and 

SYSTEM A 

I 
I I I I I I 

0 50 100 150 200 250 300 

ELONGATION ( E, W )  

Fig. 3. Isochronous stress-strain curves derived from constant strain rate data. System 
A; time in minutes. 

K z  (as determined by the experimental procedures used) to predict prop- 
erly the measurable stress-strain behavior of the sealant in model test 
joints. Since Figure 1 indicated that the systems tested all deformed at 
essentially constant volume, we assumed Kz = 0.5 and proceeded to deter- 
mine Kl from’O 

K1 = a/(l - X-’) 

(Kz = 0.5) 
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Since Q is given as a set of isochronal functions of B (or A), K1 will also be 
obtained as a set of isochrones varying with A. It is interesting to consider 
K I  for a material that approximately obeys the Mooney-Rivlin stress- 
strain law in extension16S1*: 

./(A - A-2) = 2(C1 + C2A-1) (7%) 

v = 0.5 (7b) 

By comparing eqs. (6) and (7), we can see that, for such a material, 

Kl = 2(CJ + C2) 

Kz = v = 0.5. 
(84  

(8b) 

The Finite-Element Method 

In deforming a body of sufficient size to have a distribution of stresses 
and strains, one approach to rational analysis is to subdivide the body into 
a number of elements. Each element is assumed to be of finite size, but 
small enough to be regarded as undergoing linear (with respect to coordinate 
distance) displacements of each material point and having uniform material 
properties. 2o The stress-strain behavior of each element is separately con- 
sidered, but continuity of displacements across element boundaries and 
balanced forces are required. The overall behavior is obtained by a sum- 
ming process that is analogous to a numerical integration. 

Even though each element is simple enough to be analyzed in three di- 
mensions to yield a full description of stress and strain, the problem of rec- 
onciling all the contributions in three dimensions is still too great for the 
available computer programs. For simplification, two approaches have 
been used : 

(1) Plane strain, in which all variable deformations are confined to two 
dimensions, while the strain in the third dimension may be prespecified but 
must be uniform and homogeneous throughout all elements; variable 
stresses then arise in the third dimension. 

(2) Plane stress, in which all stress variation is confined to two dimen- 
sions, while the strain in the third dimension is adjusted for each element 
to bring about zero stress. 

The physical situation most closely resembling plane stress would be the 
deformation of a thin sheet of material with no pressure on either side and 
no bending torque out of the plane of the sheet. Tensile testing of dumb- 
bells should approach this. 

For plane strain, the physical situation should call for essentially infinite 
length in the third dimension, so that no stress-free surface bounds the 
specimen perpendicular to this axis. Again no bending of this direction can 
occur, although a uniform extension or contraction can be imposed parallel 
to this Z-axis. The geometry of a sealed joint should begin to approach 
plane strain since most joints are much longer than their width or thickness 
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and many joint motions are essentially perpendicular to the length of the 
joint. 

The available computer programs include a group that have been devel- 
oped over many years within the aerospace industry to permit rational 
analysis of the behavior of solid propellant “grains” (i.e., cast or fabricated 
masses of solid propellant), which may be bonded to a case or shell, when 
undergoing mechanical stress or deformation. The original programs19 
were written to permit small-strain analysis, by the finite-element proce- 
dure, of material structures of some geometric complexity but having con- 
stant values of Young’s modulus and Poisson’s ratio. Subsequently the 
programs were extended to finite deformation situations and procedures for 
handling time dependence were devised.s-12* 

4 

Fig. 4. Division of an arbitrary shape into three “quadrilateral” elements, one of which 
is actually a triangle. This is a 4 x 2 mesh. 

As now constituted, the computer program imposes certain additional 
limits on the problems which may be undertaken. Although as many as 
1000 finite elements can be handled, the calculation time (and hence the 
cost) goes up nearly as the square of the number of elements, so the coarsest 
subdivision that gives acceptable results is used. Elaborate shapes may be 
handled, but this requires careful attention to planning the subdivision and 
is likely to increase the number of elements required. Certain types of 
initially imposed forces and stresses are possible, but, in general, prestressed 
situations cannot be adequately inserted. 

In operation, the program requires as input a geometric description of 
the specimen cross section and of its subdivision into elements. Each 
element must be a quadrilateral and each of the corners (nodes) must be 
identified by two index numbers, so that all nodes lie on a topologic two- 
dimensional grid. The quadrilaterals need not be geometric rectangles and 
may degenerate to a triangle with one node lying on the straight line be- 
tween two others, but there must be four nodes and there must not be an 
internal angle in any element greater than 180”. (See Fig. 4 for a simple 
example.) The program will treat the quadrilaterals as if they were stacked 

* We are also indebted to G. P. Anderson, W. A. Cook, and E. C. Dickson of the 
Wasatch Division of Thiokol Chem. Corp. for development of much of this program and 
for assistance in applying it to our problem. 
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in a square array (i.e., topologically two-dimensional), which also places 
restrictions on the type of subdivision that is acceptable. At least all of 
the nodes on the geometric boundary and on any internal boundaries must 
be fully specified, with X- and Y-coordinates given, as well as any specified 
restrictions, e.g., that the X-coordin‘ite must move a certain distance (which 
may be zero) or that a force is specified in the Y-direction. Since several 
different kinds of materials can be used (this allows provision for holes or 
inserts in the structure), a method is provided for indicating which elements 
consist of each material. The properties of each material are also input, as 
tables of isochrones of K1,  K2,  K3,  and K 4  at selected values of Ell, the 
principal component of the large strain tensor. 

For our problems we chose, as mentioned, the condition of plane strain 
with zero imposed strain along the Z-axis. The number of elements and 
the exact detail of the node locations were varied from case ta case, to gain 
experience in the effect of these changes on the solution; usually about 150 
elements was the maximum used. The specified restrictions, which were 
only on particular node movements, provided for a given change in specimen 
dimensions (e.g., 40% extension). By selecting a particular isochrone for 
K1, the strain rate was then set (e.g., the 1.0-min isochrone would then 
specify a specimen extension rate of 40%/min). As mentioned, Kz was set 
at 0.5 at all times and strains, and K3 and K4 were set at zero. Since the K3 
isochrones were obtained from constant strain rate uniaxial data, the im- 
plicit assumption was made that all elements of a specimen were undergoing 
constant strain rate deformation (but a t  different rates) during the con- 
stant strain rate extension (or compression) of the specimen. 

Within these limits, the computer program then processed the data in 
this manner: for the (so far undeformed) specimen, for each element in 
turn, the “centroid” was located by averaging the X- and Y-coordinates of 
the four nodes; the centroid and each adjacent pair of nodes then sub- 
divided each quadrilateral element into four triangles. From the dis- 
placements of the four nodes, the principal strain, Ell, was calculated and 
used to obtain values for K1, K2,  K3,  and K 4  by interpolation in the input 
tables. These values were used with the geometric information to calculate 
triangular “element stiff nesses” which were summed into quadrilateral ele- 
ment stiffnesses. As the elements were processed, these element stiffnesses 
were further summed into a set of structural stiffness equations, containing 
as unknowns the X- and Y-displacements of all the nodes that had not been 
fixed in the input. 

Finally these simultaneous equations were solved by a least-squares 
procedure which yielded a set of displacements (and from them a set of 
calculated stresses) that was consistent with the imposed deformation and 
the particular set of element parameters (i.e., K1 to Kq for each quadrilateral 
element) that had been found by the tabular interpolation. If this had 
been a small strain problem, the calculation would then be over. That is, 
on this first set of solutions, K1, etc., would have been obtained at Ell = 0, 
so the time-dependent shear modulus alone would have been used to cal- 
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culate the stress and strain pattern. (Remember that Kz  = 0.5 and K3 = 
K4 = 0 were set up by our input.) Since this is a large strain problem, we 
must consider that the shear modulus is not appropriate when Ell > 0;  
instead the K1 value must be found for El1 for each element. Consequently, 
the program now recalculated the centroid location and the El, value for 
each now-deformed element and repeated the tabular interpolation of 
material parameters and element stiffness calculations and summations, 
eventually re-solving the simultaneous stiffness equations to get a new 
set of X- and Y-displacements. 

Obviously, if the new set was essentially the same as the previous set, 
there would be no need for further iterations of this procedure and the 
solution would be at  hand. It can be seen from eq. (6)  that the K 1  value at  
zero strain is smaller than the appropriate value at  any finite strain. Hence 
the calculated nodal displacements after the first iteration would be too 
large, particularly for highly deformed elements. To counteract this, a 
“creeping up” procedure had been built into the program. This proceeded 
by multiplying the calculated displacement of each node (from its position 
at  the previous iteration) by a “relaxation factor” (a number between zero 
and one) so as to reduce the magnitude of the shift of the nodes and thus 
reduce the magnitude of the jump in K1 values from iteration to iteration. 
These relaxation factors were specified as part of the input, as was the 
maximum number of iterations permitted and the convergence criterion. 
The latter was tested after each iteration (after applying the relaxation 
factor) by averaging the displacements of all the nodes on the latest iteration 
and dividing this by the average overall displacement of all the nodes from 
the original undeformed positions. When the latest iteration gave a frac- 
tional average displacement less than the convergence criterion (or if the 
maximum number of iterations had been reached), the program exited from 
the iteration process and calculated the final set of stresses and strains. 
In many cases, the convergence criterion used was 1%, since it was likely 
that measurement errors of strain on the ring test samples and the model- 
joint test samples would be at  least this great. 

For 
each iteration, the location of each node is given, so it is possible to trace the 
response of the specimen shape to the stepwise imposition of the specified 
restrictions (e.g., the imposed elongation) and to plot the final shape of the 
joint seal, including detail of the distribution of displacements. For each 
element, the three-dimensional components of the stress at the centroid 
and of the strain are given, as well as the maximum and minimum values of 
the stress and strain ellipsoids, the direction of the stress maximum, and 
the strain energy of the element. By summing the stress components over 
a properly chosen group of elements, the force needed to maintain the im- 
posed deformation is obtained. From the calculated stresses at  the element 
centroids, the distribution pattern of the stresses may be inferred. In 
favorable cases, the pattern is smooth enough to permit the drawing of 
contour lines of constant local maximum tensile stress, here termed iso- 

The output of the computer program could be quite voluminous. 
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dynics. Distribution patterns may also be inferred of the stress com- 
ponents, as well as of the angle of local maximum stress, of the maximum 
local strain and strain components, and of the strain energy density. 

The 
measured shape can be compared to prediction, as can the total force 
needed to deform the joint seal. Such comparisons will be made for some 
model joints in the next a r t i ~ l e . ~  In principle, a t  least, “frozen stress” 
photoelastic techniques21 could be used to test the predicted stress distri- 
butions. This would require selection of a clear photoelastic resin having 
essentially the same K1 versus large strain tensor properties as the sealant 
material, a much more stringent requirement than simply matching the 
zero-strain shear modulus and restricting study to the “effectively linear 
behavior” regions of both model resin and prototype material.22 The basic 
computer program has indeed been used to predict such photoelastic pat- 
terns within the rocket propellant industry. 

GLOSSARY OF SYMBOLS 
C1,C2 = parameters of Mooney-Rivlin phenomenologic theory of elastic 

D, = inside diameter of ring sample 
Do = outside diameter of ring sample 
do = initial depth of fill of a rectangular butt-joint seal 
E(t)  = tensile stress-relaxation modulus = U/B in a simple tensile stress- 

E,, = large strain tensor13 
El1 = principal component of the large strain tensor Ei j  = 0.5 (1 - XC-2) 

e ,  = measure of volume change = 0.5 (1 - J3-2)9 
F( t )  = constant strain rate tensile modulus = U/B in a constant rate of 

f ( t )  = generalized time-dependent modulus 
G(t) = time-dependent shear modulus 
g(e) = @(B) /E;  this is the reciprocal of Smith’s g(~)5 
h = amount of “curve-in” or neck-down of a rectangular butt-joint 

seal on stretching 
J 3  = relative volume = V / V ,  
K1 = strain- and time-dependent material parameter which reduces 

to the time-dependent shear modulus at  infinitesima.1 straing 
K2 = strain-dependent material parameter which expresses volume 

change on deformation and, like the generalized Poisson ratio, 
is 0.5 for isovolumetric deformationg 

K3 = strain-dependent material parameter which expresses strain- 
induced anisotropy ; zero at  infinitesimal strain” 

Kd = strain-dependent material parameter which is needed for full 
three-dimensional analysis; zero at  infinitesimal strainllBl2 

Lo = initial sample length 

Testing in all detail of these computer predictions is not practical. 

behavior 

relaxation experiment at constant B 

in uniaxial extension 

extension stress-strain test starting at  zero strain5 
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t 
V 
vo 
€ 

elat 

= time since application of force 
= sample volume 
= volume of undeformed sample 
= engineering strain, deformation/undeformed length = X - 1 
= transverse strain, transverse deformation/undeformed width = 

= extension ratio, deformed length/undeformed length 
= transverse dimension ratio, deformed width/undeformed width 
= generalized Poisson ratio” 
= Poisson’s ratio for small tensile strain = elat/€ 

= nominal stress, applied force/area of undeformed specimen 
= true stress, net force/area of deformed specimen 
= generalized function of extension, empirical measure of strain 
= relative volume dilatation = J 3  - 1 

1 - Xlat 
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